[Решено] NRF24L01 и конфликт SDCARD

Биладина
Пн 23 апреля 2018 г., 18:29
Привет, я пытаюсь подключить адаптер NRF24L01 и SDCARD к Bluepill. Я использую его в качестве RX / приемник для регистратора данных.

NRF24L01 Проводка (я использую SPI2):
CE -> PA8
CSN -> PB12
SCK -> PB13
Моси -> PB15
Мисо -> PB14

и адаптер SDCARD (я использую SPI1):
CS -> PA4
Моси -> ПА7
SCK -> ПА5
Мисо -> PA6

Для библиотеки NRF24L01 я использую эту библиотеку:
https: // github.com/spirilis/endf24

А для адаптера SDCARD я использую библиотеку Greiman SDFAT:
https: // github.com/greiman/sdfat

Если я разделяю NRF24L01 и SDCARD, каждый из них работает отлично, и если я объединяюсь в одном чертеже, NRF24L01 не может получить сообщение с другого устройства..

Это мой код:
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { // critical section if (!buffer_full) { ++ptr1; buffer_full = (ptr1 == ptr2); } }

Стивестронг
Пн 23 апреля 2018 г., 19:08
Какой IDE вы используете? Какое ядро ​​вы используете?
У тебя нет никаких предупреждений во время компиляции?

Мэнни
Пн 23 апреля 2018 г., 19:52
Пытаться
void bmpDraw(char *filename, uint8_t x, uint8_t y) { File bmpFile; int bmpWidth, bmpHeight; // W+H in pixels uint8_t bmpDepth; // Bit depth (currently must be 24) uint32_t bmpImageoffset; // Start of image data in file uint32_t rowSize; // Not always = bmpWidth; may have padding uint8_t sdbuffer[3*20]; // pixel buffer (R+G+B per pixel) uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer boolean goodBmp = false; // Set to true on valid header parse boolean flip = true; // BMP is stored bottom-to-top int w, h, row, col; uint8_t r, g, b; uint32_t pos = 0, startTime = millis(); if((x >= TFTscreen.width()) || (y >= TFTscreen.height())) return; Serial.println(); Serial.print("Loading image '"); Serial.print(filename); Serial.println('\''); // Open requested file on SD card if ((bmpFile = SD.open(filename)) == NULL) { Serial.print("File not found"); return; } // Parse BMP header if(read16(bmpFile) == 0x4D42) { // BMP signature Serial.print("File size: "); Serial.println(read32(bmpFile)); (void)read32(bmpFile); // Read & ignore creator bytes bmpImageoffset = read32(bmpFile); // Start of image data Serial.print("Image Offset: "); Serial.println(bmpImageoffset, DEC); // Read DIB header Serial.print("Header size: "); Serial.println(read32(bmpFile)); bmpWidth = read32(bmpFile); bmpHeight = read32(bmpFile); if(read16(bmpFile) == 1) { // # planes -- must be '1' bmpDepth = read16(bmpFile); // bits per pixel Serial.print("Bit Depth: "); Serial.println(bmpDepth); if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed goodBmp = true; // Supported BMP format -- proceed! Serial.print("Image size: "); Serial.print(bmpWidth); Serial.print('x'); Serial.println(bmpHeight); // BMP rows are padded (if needed) to 4-byte boundary rowSize = (bmpWidth * 3 + 3) & ~3; // If bmpHeight is negative, image is in top-down order. // This is not canon but has been observed in the wild. if(bmpHeight < 0) { bmpHeight = -bmpHeight; flip = false; } // Crop area to be loaded w = bmpWidth; h = bmpHeight; if((x+w-1) >= TFTscreen.width()) w = TFTscreen.width() - x; if((y+h-1) >= TFTscreen.height()) h = TFTscreen.height() - y; // Set TFT address window to clipped image bounds TFTscreen.setAddrWindow(x, y, x+w-1, y+h-1); for (row=0; row= sizeof(sdbuffer)) { // Indeed bmpFile.read(sdbuffer, sizeof(sdbuffer)); buffidx = 0; // Set index to beginning } // Convert pixel from BMP to TFT format, push to display b = sdbuffer[buffidx++]; g = sdbuffer[buffidx++]; r = sdbuffer[buffidx++]; TFTscreen.pushColor(TFTscreen.Color565(r,g,b)); } // end pixel } // end scanline Serial.print("Loaded in "); Serial.print(millis() - startTime); Serial.println(" ms"); } // end goodBmp } } bmpFile.close(); if(!goodBmp) Serial.println("BMP format not recognized."); } // These read 16- and 32-bit types from the SD card file. // BMP data is stored little-endian, Arduino is little-endian too. // May need to reverse subscript order if porting elsewhere. uint16_t read16(File f) { uint16_t result; ((uint8_t *)&result)[0] = f.read(); // LSB ((uint8_t *)&result)[1] = f.read(); // MSB return result; } uint32_t read32(File f) { uint32_t result; ((uint8_t *)&result)[0] = f.read(); // LSB ((uint8_t *)&result)[1] = f.read(); ((uint8_t *)&result)[2] = f.read(); ((uint8_t *)&result)[3] = f.read(); // MSB return result; }

Биладина
Пн 23 апреля 2018 г., 8:05 вечера
[Стивестронг - Пн 23 апреля 2018 г., 19:08] - Какой IDE вы используете? Какое ядро ​​вы используете?
У тебя нет никаких предупреждений во время компиляции?
Я использую Arduino Ide, Core, извините, я не знаю, я все еще учу..

Биладина
Пн 23 апреля 2018 г., 20:06
@Manny, хорошо, я попробую..

Биладина
Вт 24 апреля 2018 г., 2:49
@Manny, я меняю с вашим кодом, но все еще не работаю..

Все еще то же самое, не может получить данные:
Изображение

Вот что происходит, когда я удаляю инициализацию SDCARD, она работает:
Изображение

его странная, без ошибок, без предупреждения..

Я также тестирую с библиотекой SDCARD Arduino, но то же самое, все еще не работая..

victor_pv
Вт 24 апреля 2018 г. 5:49
Поскольку вы пробовали 2 разные библиотеки SDCARD с тем же результатом, возможно, проблема в библиотеке NRF24, пытаясь использовать объект SPI и сбой эскиза.
Попробуйте использовать порт SPI 2 с помощью SDCARD и порт 1 с NRF.

Greimans SDFAT Последняя библиотека SD FAT позволяет использовать любой порт. Я забыл, как выбрать порт, но вы можете увидеть его где -нибудь в документации или в коде SDSPI.

Стивестронг
Вт 24 апреля 2018 г. 6:28
В качестве альтернативы вы можете попробовать моя вилка SDFAT вместо оригинала. Я адаптировал его для работы с ядром Libmaple (я не уверен, но вам также может потребоваться использовать его вместе с мой либмапл ядро)

Мэнни
Вт 24 апреля 2018 г. 9:33 утра
[Биладина - Вт 24 апреля 2018 г. 2:49] - @Manny, я меняю с вашим кодом, но все еще не работаю..

Все еще то же самое, не может получить данные:
Изображение

Вот что происходит, когда я удаляю инициализацию SDCARD, она работает:
Изображение

его странная, без ошибок, без предупреждения..

Я также тестирую с библиотекой SDCARD Arduino, но то же самое, все еще не работая..
Я использовал SD -карту и NRF24 в разных портах SPI, но не в этой конкретной радиотебильной библиотеке.

Вы могли бы попробовать ViewTopic.PHP?P = 20500#P20500

Биладина
Ср 25 апреля 2018 г., 2:33
[Мэнни - Вторник 24 апреля 2018 г. 9:33] - Я использовал SD -карту и NRF24 в разных портах SPI, но не в этой конкретной радиотебильной библиотеке.

Вы могли бы попробовать ViewTopic.PHP?P = 20500#P20500
Прежде чем использовать эту библиотеку и купить модуль SDCARD, я пробую любую библиотеку в этой теме, просто чтобы убедиться, что устройство может работать, включая вашу библиотеку, но никто не может работать, тогда я нашел эту библиотеку и работу в своем чертеже. Я помесчу проблему в эту ветку позже.

Биладина
SAT 28 апреля 2018 г., 7:04
Наконец я решил проблему. Я не знаю, что происходит, может быть, конфликт, когда NRF24L01 и SDCARD инициализируются вместе. Вместо инициализации SDCARD в настройке я инициализации SDCARD, когда это необходимо, и он работает..

Этот окончательный код: /*************************************************** This is a library for the Adafruit 1.8" SPI display. This library works with the Adafruit 1.8" TFT Breakout w/SD card ----> http://www.adafruit.com/products/358 The 1.8" TFT shield ----> https://www.adafruit.com/product/802 The 1.44" TFT breakout ----> https://www.adafruit.com/product/2088 as well as Adafruit raw 1.8" TFT display ----> http://www.adafruit.com/products/618 Check out the links above for our tutorials and wiring diagrams These displays use SPI to communicate, 4 or 5 pins are required to interface (RST is optional) Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit! Written by Limor Fried/Ladyada for Adafruit Industries. MIT license, all text above must be included in any redistribution ****************************************************/ #include "Adafruit_ST7735.h" #include #include "pins_arduino.h" #include "wiring_private.h" #include inline uint16_t swapcolor(uint16_t x) { return (x << 11) | (x & 0x07E0) | (x >> 11); } #if defined (SPI_HAS_TRANSACTION) static SPISettings mySPISettings; #elif defined (__AVR__) static uint8_t SPCRbackup; static uint8_t mySPCR; #endif /* // Constructor when using software SPI. All output pins are configurable. Adafruit_ST7735::Adafruit_ST7735(int8_t cs, int8_t rs, int8_t sid, int8_t sclk, int8_t rst) : Adafruit_GFX(ST7735_TFTWIDTH, ST7735_TFTHEIGHT_18) { _cs = cs; _rs = rs; _sid = sid; _sclk = sclk; _rst = rst; hwSPI = false; } */ // Constructor when using hardware SPI. Faster, but must use SPI pins // specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.) Adafruit_ST7735::Adafruit_ST7735(int8_t cs, int8_t rs, int8_t rst) : Adafruit_GFX(ST7735_TFTWIDTH, ST7735_TFTHEIGHT_18) { _cs = cs; _rs = rs; _rst = rst; hwSPI = true; _sid = _sclk = 0; } #if defined(CORE_TEENSY) && !defined(__AVR__) #define __AVR__ #endif inline void Adafruit_ST7735::spiwrite(uint8_t c) { //Serial.println(c, HEX); if (hwSPI) { #if defined (SPI_HAS_TRANSACTION) SPI.transfer(c); #elif defined (__AVR__) SPCRbackup = SPCR; SPCR = mySPCR; SPI.transfer(c); SPCR = SPCRbackup; // SPDR = c; // while(!(SPSR & _BV(SPIF))); #elif defined (__STM32F1__) SPI.write(c); #elif defined (__arm__) SPI.setClockDivider(21); //4MHz SPI.setDataMode(SPI_MODE0); SPI.transfer(c); #endif } else { // Fast SPI bitbang swiped from LPD8806 library for(uint8_t bit = 0x80; bit; bit >>= 1) { if(c & bit) *dataport |= datapinmask; else *dataport &= ~datapinmask; *clkport |= clkpinmask; *clkport &= ~clkpinmask; } } } void Adafruit_ST7735::writecommand(uint8_t c) { #if defined (SPI_HAS_TRANSACTION) SPI.beginTransaction(mySPISettings); #endif *rsport &= ~rspinmask; *csport &= ~cspinmask; //Serial.print("C "); spiwrite(c); *csport |= cspinmask; #if defined (SPI_HAS_TRANSACTION) SPI.endTransaction(); #endif } void Adafruit_ST7735::writedata(uint8_t c) { #if defined (SPI_HAS_TRANSACTION) SPI.beginTransaction(mySPISettings); #endif *rsport |= rspinmask; *csport &= ~cspinmask; //Serial.print("D "); spiwrite(c); *csport |= cspinmask; #if defined (SPI_HAS_TRANSACTION) SPI.endTransaction(); #endif } // Rather than a bazillion writecommand() and writedata() calls, screen // initialization commands and arguments are organized in these tables // stored in PROGMEM. The table may look bulky, but that's mostly the // formatting -- storage-wise this is hundreds of bytes more compact // than the equivalent code. Companion function follows. #define DELAY 0x80 static const uint8_t PROGMEM Bcmd[] = { // Initialization commands for 7735B screens 18, // 18 commands in list: ST7735_SWRESET, DELAY, // 1: Software reset, no args, w/delay 50, // 50 ms delay ST7735_SLPOUT , DELAY, // 2: Out of sleep mode, no args, w/delay 255, // 255 = 500 ms delay ST7735_COLMOD , 1+DELAY, // 3: Set color mode, 1 arg + delay: 0x05, // 16-bit color 10, // 10 ms delay ST7735_FRMCTR1, 3+DELAY, // 4: Frame rate control, 3 args + delay: 0x00, // fastest refresh 0x06, // 6 lines front porch 0x03, // 3 lines back porch 10, // 10 ms delay ST7735_MADCTL , 1 , // 5: Memory access ctrl (directions), 1 arg: 0x08, // Row addr/col addr, bottom to top refresh ST7735_DISSET5, 2 , // 6: Display settings #5, 2 args, no delay: 0x15, // 1 clk cycle nonoverlap, 2 cycle gate // rise, 3 cycle osc equalize 0x02, // Fix on VTL ST7735_INVCTR , 1 , // 7: Display inversion control, 1 arg: 0x0, // Line inversion ST7735_PWCTR1 , 2+DELAY, // 8: Power control, 2 args + delay: 0x02, // GVDD = 4.7V 0x70, // 1.0uA 10, // 10 ms delay ST7735_PWCTR2 , 1 , // 9: Power control, 1 arg, no delay: 0x05, // VGH = 14.7V, VGL = -7.35V ST7735_PWCTR3 , 2 , // 10: Power control, 2 args, no delay: 0x01, // Opamp current small 0x02, // Boost frequency ST7735_VMCTR1 , 2+DELAY, // 11: Power control, 2 args + delay: 0x3C, // VCOMH = 4V 0x38, // VCOML = -1.1V 10, // 10 ms delay ST7735_PWCTR6 , 2 , // 12: Power control, 2 args, no delay: 0x11, 0x15, ST7735_GMCTRP1,16 , // 13: Magical unicorn dust, 16 args, no delay: 0x09, 0x16, 0x09, 0x20, // (seriously though, not sure what 0x21, 0x1B, 0x13, 0x19, // these config values represent) 0x17, 0x15, 0x1E, 0x2B, 0x04, 0x05, 0x02, 0x0E, ST7735_GMCTRN1,16+DELAY, // 14: Sparkles and rainbows, 16 args + delay: 0x0B, 0x14, 0x08, 0x1E, // (ditto) 0x22, 0x1D, 0x18, 0x1E, 0x1B, 0x1A, 0x24, 0x2B, 0x06, 0x06, 0x02, 0x0F, 10, // 10 ms delay ST7735_CASET , 4 , // 15: Column addr set, 4 args, no delay: 0x00, 0x02, // XSTART = 2 0x00, 0x81, // XEND = 129 ST7735_RASET , 4 , // 16: Row addr set, 4 args, no delay: 0x00, 0x02, // XSTART = 1 0x00, 0x81, // XEND = 160 ST7735_NORON , DELAY, // 17: Normal display on, no args, w/delay 10, // 10 ms delay ST7735_DISPON , DELAY, // 18: Main screen turn on, no args, w/delay 255 }, // 255 = 500 ms delay Rcmd1[] = { // Init for 7735R, part 1 (red or green tab) 15, // 15 commands in list: ST7735_SWRESET, DELAY, // 1: Software reset, 0 args, w/delay 150, // 150 ms delay ST7735_SLPOUT , DELAY, // 2: Out of sleep mode, 0 args, w/delay 255, // 500 ms delay ST7735_FRMCTR1, 3 , // 3: Frame rate ctrl - normal mode, 3 args: 0x01, 0x2C, 0x2D, // Rate = fosc/(1x2+40) * (LINE+2C+2D) ST7735_FRMCTR2, 3 , // 4: Frame rate control - idle mode, 3 args: 0x01, 0x2C, 0x2D, // Rate = fosc/(1x2+40) * (LINE+2C+2D) ST7735_FRMCTR3, 6 , // 5: Frame rate ctrl - partial mode, 6 args: 0x01, 0x2C, 0x2D, // Dot inversion mode 0x01, 0x2C, 0x2D, // Line inversion mode ST7735_INVCTR , 1 , // 6: Display inversion ctrl, 1 arg, no delay: 0x07, // No inversion ST7735_PWCTR1 , 3 , // 7: Power control, 3 args, no delay: 0xA2, 0x02, // -4.6V 0x84, // AUTO mode ST7735_PWCTR2 , 1 , // 8: Power control, 1 arg, no delay: 0xC5, // VGH25 = 2.4C VGSEL = -10 VGH = 3 * AVDD ST7735_PWCTR3 , 2 , // 9: Power control, 2 args, no delay: 0x0A, // Opamp current small 0x00, // Boost frequency ST7735_PWCTR4 , 2 , // 10: Power control, 2 args, no delay: 0x8A, // BCLK/2, Opamp current small & Medium low 0x2A, ST7735_PWCTR5 , 2 , // 11: Power control, 2 args, no delay: 0x8A, 0xEE, ST7735_VMCTR1 , 1 , // 12: Power control, 1 arg, no delay: 0x0E, ST7735_INVOFF , 0 , // 13: Don't invert display, no args, no delay ST7735_MADCTL , 1 , // 14: Memory access control (directions), 1 arg: 0xC8, // row addr/col addr, bottom to top refresh ST7735_COLMOD , 1 , // 15: set color mode, 1 arg, no delay: 0x05 }, // 16-bit color Rcmd2green[] = { // Init for 7735R, part 2 (green tab only) 2, // 2 commands in list: ST7735_CASET , 4 , // 1: Column addr set, 4 args, no delay: 0x00, 0x02, // XSTART = 0 0x00, 0x7F+0x02, // XEND = 127 ST7735_RASET , 4 , // 2: Row addr set, 4 args, no delay: 0x00, 0x01, // XSTART = 0 0x00, 0x9F+0x01 }, // XEND = 159 Rcmd2red[] = { // Init for 7735R, part 2 (red tab only) 2, // 2 commands in list: ST7735_CASET , 4 , // 1: Column addr set, 4 args, no delay: 0x00, 0x00, // XSTART = 0 0x00, 0x7F, // XEND = 127 ST7735_RASET , 4 , // 2: Row addr set, 4 args, no delay: 0x00, 0x00, // XSTART = 0 0x00, 0x9F }, // XEND = 159 Rcmd2green144[] = { // Init for 7735R, part 2 (green 1.44 tab) 2, // 2 commands in list: ST7735_CASET , 4 , // 1: Column addr set, 4 args, no delay: 0x00, 0x00, // XSTART = 0 0x00, 0x7F, // XEND = 127 ST7735_RASET , 4 , // 2: Row addr set, 4 args, no delay: 0x00, 0x00, // XSTART = 0 0x00, 0x7F }, // XEND = 127 Rcmd3[] = { // Init for 7735R, part 3 (red or green tab) 4, // 4 commands in list: ST7735_GMCTRP1, 16 , // 1: Magical unicorn dust, 16 args, no delay: 0x02, 0x1c, 0x07, 0x12, 0x37, 0x32, 0x29, 0x2d, 0x29, 0x25, 0x2B, 0x39, 0x00, 0x01, 0x03, 0x10, ST7735_GMCTRN1, 16 , // 2: Sparkles and rainbows, 16 args, no delay: 0x03, 0x1d, 0x07, 0x06, 0x2E, 0x2C, 0x29, 0x2D, 0x2E, 0x2E, 0x37, 0x3F, 0x00, 0x00, 0x02, 0x10, ST7735_NORON , DELAY, // 3: Normal display on, no args, w/delay 10, // 10 ms delay ST7735_DISPON , DELAY, // 4: Main screen turn on, no args w/delay 100 }; // 100 ms delay // Companion code to the above tables. Reads and issues // a series of LCD commands stored in PROGMEM byte array. void Adafruit_ST7735::commandList(const uint8_t *addr) { uint8_t numCommands, numArgs; uint16_t ms; numCommands = pgm_read_byte(addr++); // Number of commands to follow while(numCommands--) { // For each command... writecommand(pgm_read_byte(addr++)); // Read, issue command numArgs = pgm_read_byte(addr++); // Number of args to follow ms = numArgs & DELAY; // If hibit set, delay follows args numArgs &= ~DELAY; // Mask out delay bit while(numArgs--) { // For each argument... writedata(pgm_read_byte(addr++)); // Read, issue argument } if(ms) { ms = pgm_read_byte(addr++); // Read post-command delay time (ms) if(ms == 255) ms = 500; // If 255, delay for 500 ms delay(ms); } } } // Initialization code common to both 'B' and 'R' type displays void Adafruit_ST7735::commonInit(const uint8_t *cmdList) { colstart = rowstart = 0; // May be overridden in init func pinMode(_rs, OUTPUT); pinMode(_cs, OUTPUT); csport = portOutputRegister(digitalPinToPort(_cs)); rsport = portOutputRegister(digitalPinToPort(_rs)); cspinmask = digitalPinToBitMask(_cs); rspinmask = digitalPinToBitMask(_rs); if(hwSPI) { // Using hardware SPI #if defined (SPI_HAS_TRANSACTION) SPI.begin(); mySPISettings = SPISettings(8000000, MSBFIRST, SPI_MODE0); #elif defined (__AVR__) SPCRbackup = SPCR; SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV4); SPI.setDataMode(SPI_MODE0); mySPCR = SPCR; // save our preferred state //Serial.print("mySPCR = 0x"); Serial.println(SPCR, HEX); SPCR = SPCRbackup; // then restore #elif defined (__SAM3X8E__) SPI.begin(); SPI.setClockDivider(21); //4MHz SPI.setDataMode(SPI_MODE0); #elif defined (__STM32F1__) SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV2); SPI.setDataMode(SPI_MODE0); SPI.setBitOrder(MSBFIRST); #endif } else { pinMode(_sclk, OUTPUT); pinMode(_sid , OUTPUT); clkport = portOutputRegister(digitalPinToPort(_sclk)); dataport = portOutputRegister(digitalPinToPort(_sid)); clkpinmask = digitalPinToBitMask(_sclk); datapinmask = digitalPinToBitMask(_sid); *clkport &= ~clkpinmask; *dataport &= ~datapinmask; } // toggle RST low to reset; CS low so it'll listen to us *csport &= ~cspinmask; if (_rst) { pinMode(_rst, OUTPUT); digitalWrite(_rst, HIGH); delay(500); digitalWrite(_rst, LOW); delay(500); digitalWrite(_rst, HIGH); delay(500); } if(cmdList) commandList(cmdList); } // Initialization for ST7735B screens //void Adafruit_ST7735::initB(void) { // commonInit(Bcmd); //} // Initialization for ST7735R screens (green or red tabs) void Adafruit_ST7735::initR(uint8_t options) { commonInit(Rcmd1); if(options == INITR_GREENTAB) { commandList(Rcmd2green); colstart = 2; rowstart = 1; } else if(options == INITR_144GREENTAB) { _height = ST7735_TFTHEIGHT_144; commandList(Rcmd2green144); colstart = 2; rowstart = 3; } else { // colstart, rowstart left at default '0' values commandList(Rcmd2red); } commandList(Rcmd3); // if black, change MADCTL color filter if (options == INITR_BLACKTAB) { writecommand(ST7735_MADCTL); writedata(0xC0); } tabcolor = options; } void Adafruit_ST7735::setAddrWindow(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1) { if (hwSPI) { #if defined (__STM32F1__) writecommand(ST7735_CASET); *rsport |= rspinmask; *csport &= ~cspinmask; SPI.setDataSize (SPI_CR1_DFF); SPI.write(x0+colstart); SPI.write(x1+colstart); writecommand(ST7735_RASET); *rsport |= rspinmask; *csport &= ~cspinmask; SPI.write(y0+rowstart); SPI.write(y1+rowstart); SPI.setDataSize(0); writecommand(ST7735_RAMWR); #endif } else { writecommand(ST7735_CASET); // Column addr set writedata(0x00); writedata(x0+colstart); // XSTART writedata(0x00); writedata(x1+colstart); // XEND writecommand(ST7735_RASET); // Row addr set writedata(0x00); writedata(y0+rowstart); // YSTART writedata(0x00); writedata(y1+rowstart); // YEND writecommand(ST7735_RAMWR); // write to RAM } // end else } void Adafruit_ST7735::pushColor(uint16_t color) { #if defined (SPI_HAS_TRANSACTION) SPI.beginTransaction(mySPISettings); #endif *rsport |= rspinmask; *csport &= ~cspinmask; spiwrite(color >> 8); spiwrite(color); *csport |= cspinmask; #if defined (SPI_HAS_TRANSACTION) SPI.endTransaction(); #endif } void Adafruit_ST7735::drawPixel(int16_t x, int16_t y, uint16_t color) { if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)) return; setAddrWindow(x,y,x+1,y+1); #if defined (SPI_HAS_TRANSACTION) SPI.beginTransaction(mySPISettings); #endif *rsport |= rspinmask; *csport &= ~cspinmask; spiwrite(color >> 8); spiwrite(color); *csport |= cspinmask; #if defined (SPI_HAS_TRANSACTION) SPI.endTransaction(); #endif } void Adafruit_ST7735::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // Rudimentary clipping if((x >= _width) || (y >= _height)) return; if((y+h-1) >= _height) h = _height-y; setAddrWindow(x, y, x, y+h-1); #if defined (SPI_HAS_TRANSACTION) SPI.beginTransaction(mySPISettings); #endif *rsport |= rspinmask; *csport &= ~cspinmask; if (hwSPI) { #if defined (__STM32F1__) SPI.setDataSize (SPI_CR1_DFF); // Set SPI 16bit mode lineBuffer[0] = color; SPI.dmaSend(lineBuffer, h, 0); SPI.setDataSize (0); #endif } else { uint8_t hi = color >> 8, lo = color; while (h--) { spiwrite(hi); spiwrite(lo); } // end while } // end else *csport |= cspinmask; #if defined (SPI_HAS_TRANSACTION) SPI.endTransaction(); #endif } void Adafruit_ST7735::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // Rudimentary clipping if((x >= _width) || (y >= _height)) return; if((x+w-1) >= _width) w = _width-x; setAddrWindow(x, y, x+w-1, y); #if defined (SPI_HAS_TRANSACTION) SPI.beginTransaction(mySPISettings); #endif *rsport |= rspinmask; *csport &= ~cspinmask; if (hwSPI) { #if defined (__STM32F1__) SPI.setDataSize (SPI_CR1_DFF); // Set spi 16bit mode lineBuffer[0] = color; SPI.dmaSend(lineBuffer, w, 0); SPI.setDataSize (0); #endif } else { uint8_t hi = color >> 8, lo = color; while (w--) { spiwrite(hi); spiwrite(lo); } } // end else *csport |= cspinmask; #if defined (SPI_HAS_TRANSACTION) SPI.endTransaction(); #endif } void Adafruit_ST7735::fillScreen(uint16_t color) { if (hwSPI) { #if defined (__STM32F1__) setAddrWindow(0, 0, _width - 1, _height - 1); *rsport |= rspinmask; *csport &= ~cspinmask; SPI.setDataSize (SPI_CR1_DFF); // Set spi 16bit mode lineBuffer[0] = color; SPI.dmaSend(lineBuffer, (65535), 0); SPI.dmaSend(lineBuffer, ((_width * _height) - 65535), 0); SPI.setDataSize (0); #endif } else { fillRect(0, 0, _width, _height, color); } // end else } // fill a rectangle void Adafruit_ST7735::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { // rudimentary clipping (drawChar w/big text requires this) if((x >= _width) || (y >= _height)) return; if((x + w - 1) >= _width) w = _width - x; if((y + h - 1) >= _height) h = _height - y; setAddrWindow(x, y, x+w-1, y+h-1); #if defined (SPI_HAS_TRANSACTION) SPI.beginTransaction(mySPISettings); #endif *rsport |= rspinmask; *csport &= ~cspinmask; if (hwSPI) { #if defined (__STM32F1__) SPI.setDataSize (SPI_CR1_DFF); // Set spi 16bit mode lineBuffer[0] = color; if (w*h <= 65535) { SPI.dmaSend(lineBuffer, (w*h), 0); } else { SPI.dmaSend(lineBuffer, (65535), 0); SPI.dmaSend(lineBuffer, ((w*h) - 65535), 0); } SPI.setDataSize (0); #endif } else { uint8_t hi = color >> 8, lo = color; for(y=h; y>0; y--) { for(x=w; x>0; x--) { spiwrite(hi); spiwrite(lo); } // end for } // end for } // end else *csport |= cspinmask; #if defined (SPI_HAS_TRANSACTION) SPI.endTransaction(); #endif } // Pass 8-bit (each) R,G,B, get back 16-bit packed color uint16_t Adafruit_ST7735::Color565(uint8_t r, uint8_t g, uint8_t b) { return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3); } #define MADCTL_MY 0x80 #define MADCTL_MX 0x40 #define MADCTL_MV 0x20 #define MADCTL_ML 0x10 #define MADCTL_RGB 0x00 #define MADCTL_BGR 0x08 #define MADCTL_MH 0x04 void Adafruit_ST7735::setRotation(uint8_t m) { writecommand(ST7735_MADCTL); rotation = m % 4; // can't be higher than 3 switch (rotation) { case 0: if (tabcolor == INITR_BLACKTAB) { writedata(MADCTL_MX | MADCTL_MY | MADCTL_RGB); } else { writedata(MADCTL_MX | MADCTL_MY | MADCTL_BGR); } _width = ST7735_TFTWIDTH; if (tabcolor == INITR_144GREENTAB) _height = ST7735_TFTHEIGHT_144; else _height = ST7735_TFTHEIGHT_18; break; case 1: if (tabcolor == INITR_BLACKTAB) { writedata(MADCTL_MY | MADCTL_MV | MADCTL_RGB); } else { writedata(MADCTL_MY | MADCTL_MV | MADCTL_BGR); } if (tabcolor == INITR_144GREENTAB) _width = ST7735_TFTHEIGHT_144; else _width = ST7735_TFTHEIGHT_18; _height = ST7735_TFTWIDTH; break; case 2: if (tabcolor == INITR_BLACKTAB) { writedata(MADCTL_RGB); } else { writedata(MADCTL_BGR); } _width = ST7735_TFTWIDTH; if (tabcolor == INITR_144GREENTAB) _height = ST7735_TFTHEIGHT_144; else _height = ST7735_TFTHEIGHT_18; break; case 3: if (tabcolor == INITR_BLACKTAB) { writedata(MADCTL_MX | MADCTL_MV | MADCTL_RGB); } else { writedata(MADCTL_MX | MADCTL_MV | MADCTL_BGR); } if (tabcolor == INITR_144GREENTAB) _width = ST7735_TFTHEIGHT_144; else _width = ST7735_TFTHEIGHT_18; _height = ST7735_TFTWIDTH; break; } } void Adafruit_ST7735::invertDisplay(boolean i) { writecommand(i ? ST7735_INVON : ST7735_INVOFF); } ////////// stuff not actively being used, but kept for posterity /* uint8_t Adafruit_ST7735::spiread(void) { uint8_t r = 0; if (_sid > 0) { r = shiftIn(_sid, _sclk, MSBFIRST); } else { //SID_DDR &= ~_BV(SID); //int8_t i; //for (i=7; i>=0; i--) { // SCLK_PORT &= ~_BV(SCLK); // r <<= 1; // r |= (SID_PIN >> SID) & 0x1; // SCLK_PORT |= _BV(SCLK); //} //SID_DDR |= _BV(SID); } return r; } void Adafruit_ST7735::dummyclock(void) { if (_sid > 0) { digitalWrite(_sclk, LOW); digitalWrite(_sclk, HIGH); } else { // SCLK_PORT &= ~_BV(SCLK); //SCLK_PORT |= _BV(SCLK); } } uint8_t Adafruit_ST7735::readdata(void) { *portOutputRegister(rsport) |= rspin; *portOutputRegister(csport) &= ~ cspin; uint8_t r = spiread(); *portOutputRegister(csport) |= cspin; return r; } uint8_t Adafruit_ST7735::readcommand8(uint8_t c) { digitalWrite(_rs, LOW); *portOutputRegister(csport) &= ~ cspin; spiwrite(c); digitalWrite(_rs, HIGH); pinMode(_sid, INPUT); // input! digitalWrite(_sid, LOW); // low spiread(); uint8_t r = spiread(); *portOutputRegister(csport) |= cspin; pinMode(_sid, OUTPUT); // back to output return r; } uint16_t Adafruit_ST7735::readcommand16(uint8_t c) { digitalWrite(_rs, LOW); if (_cs) digitalWrite(_cs, LOW); spiwrite(c); pinMode(_sid, INPUT); // input! uint16_t r = spiread(); r <<= 8; r |= spiread(); if (_cs) digitalWrite(_cs, HIGH); pinMode(_sid, OUTPUT); // back to output return r; } uint32_t Adafruit_ST7735::readcommand32(uint8_t c) { digitalWrite(_rs, LOW); if (_cs) digitalWrite(_cs, LOW); spiwrite(c); pinMode(_sid, INPUT); // input! dummyclock(); dummyclock(); uint32_t r = spiread(); r <<= 8; r |= spiread(); r <<= 8; r |= spiread(); r <<= 8; r |= spiread(); if (_cs) digitalWrite(_cs, HIGH); pinMode(_sid, OUTPUT); // back to output return r; } */